SATr: Slice Attention with Transformer for Universal Lesion Detection

نویسندگان

چکیده

Universal Lesion Detection (ULD) in computed tomography plays an essential role computer-aided diagnosis. Promising ULD results have been reported by multi-slice-input detection approaches which model 3D context from multiple adjacent CT slices, but such methods still experience difficulty obtaining a global representation among different slices and within each individual slice since they only use convolution-based fusion operations. In this paper, we propose novel Slice Attention Transformer (SATr) block can be easily plugged into backbones to form hybrid network structures. Such newly formed better long-distance feature dependency via the cascaded self-attention modules while holding strong power of modeling local features with convolutional operations original backbone. Experiments five state-of-the-art show that proposed SATr provide almost free boost lesion accuracy without extra hyperparameters or unique designs. Code: https://github.com/MIRACLE-Center/A3D_SATr .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

islanding detection methods for microgrids

امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...

15 صفحه اول

Intelligent Universal Transformer Design and Applications

Legacy transformers are passive, bulky, becoming expensive, and take longer time to deliver. They cannot provide the power quality or control which today’s loads demand for proper functioning and the electric system needs for its survivability. Solid-state transformers have been promising technologies in recent years. EPRI is pursuing development of an innovative solution – the IUTTM (Intellige...

متن کامل

Supervised Transformer Network for Efficient Face Detection

Large pose variations remain to be a challenge that confronts real-word face detection. We propose a new cascaded Convolutional Neural Network, dubbed the name Supervised Transformer Network, to address this challenge. The first stage is a multi-task Region Proposal Network (RPN), which simultaneously predicts candidate face regions along with associated facial landmarks. The candidate regions ...

متن کامل

The effect of variation in slice thickness and interslice gap on MR lesion detection.

Lesion detection by MR imaging depends on the contrast-to-noise ratio of the voxels containing the lesion relative to those containing the background. When the lesion voxels are less than completely filled, the inherent contrast between lesion and background is modified by the filling factor. Lesion detection thus depends on lesion size, slice thickness, lesion position relative to slice, thick...

متن کامل

Automatic basal slice detection for cardiac analysis

Identification of the basal slice in cardiac imaging is a key step to measuring the ejection fraction of the left ventricle. Despite all the effort placed on automatic cardiac segmentation, basal slice identification is routinely performed manually. Manual identification, however, suffers from high interobserver variability. As a result, an automatic algorithm for basal slice identification is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2022

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-031-16437-8_16